图片 1

这项工作选取了黑砷磷这样一种新型的窄带隙二维材料,在基于新型二维材料异质结的红外探测器研究领域取得重要进展

物理学院、固体微结构物理国家重点实验室、南京微结构科学与技术协同创新中心的缪峰教授课题组和王伯根教授课题组合作,在基于新型二维材料异质结的红外探测器研究领域取得重要进展,相关论文于2016年2月17日发表在《Nano
Letters》杂志上(Nano Letters, DOI: 10.1021/acs.nanolett.5b04538
。该工作主要由南京大学和上海技术物理所合作完成,邢定钰院士指导并参与了本文的工作。该论文的第一作者是物理学院博士生龙明生,通讯作者是南京大学缪峰教授、王伯根教授及上海技物所胡伟达研究员。

近年来,中波红外在热成像、分子鉴定、自由空间通讯、光学雷达等方面获得越来越重要的应用,都要求器件在室温下具备高灵敏度。  目前非制冷(室温)红外探测器的主流技术为热敏电阻式微辐射热计,但是器件比探测率偏低,响应时间慢。针对这方面的技术挑战,南京大学物理学院缪峰教授课题组及科研合作国家利用新型窄带隙二维材料“黑砷磷”(b-AsP)及相关范德华异质结,成功实现了室温性能超越现有商用技术的高灵敏中波红外光电探测,为推动二维材料在红外探测领域的应用迈出重要一步。  该课题组近年来在二维材料可见和近红外光电探测器领域已取得若干研究进展(Nano
Lett. 16,2254 (2016);Adv. Func. Mater. 26,1938
(2016).),在此基础上,这项工作选取了黑砷磷这样一种新型的窄带隙二维材料。这类材料通过元素砷同族掺杂黑磷得到,特定比例的黑砷磷b-As0.83P0.17已被发现其带隙可被调节至~0.15
eV,展现了在中红外探测领域的应用潜力。该工作首先利用机械解理法得到b-As0.83P0.17的薄层样品,制备了场效应光晶体管,在室温下观察到8.05μm中波红外的响应(图A),成功进入红外的第二个大气窗口。通过对探测器工作机制进一步的系统研究,发现光伏效应和光热电效应分别在不同背栅下会起到主导的作用(图B)。为了克服窄带隙半导体室温下暗电流和噪声较大从而导致器件性能显著下降的挑战,缪峰教授课题组利用二维材料定向转移的工艺,将不同掺杂的n型MoS2与b-As0.83P0.17(p型)堆叠在一起形成范德华异质节(图C)。测试结果显示这种结构的异质结有效降低了器件的暗电流和噪声,室温比探测率可高达5′109Jones,比目前被广泛使用的PbSe红外探测器的峰值探测率高了近1个量级(图D)。该结果也充分展示了基于窄带隙二维材料的范德华异质结在中波红外探测领域的巨大应用潜力。  图:(A)黑砷磷场效应器件在室温下8.05μm中波红外的响应信号,插图:器件的光伏响应(上)与结构示意图(下);(B)黑砷磷场效应器件的光电流随偏压及栅压的变化关系,揭示光伏效应和光热电效应分别起主导作用;(C)b-AsP-MoS2异质结光电探测器照片,标尺5μm;(D)室温下b-AsP-MoS2异质结光电探测器的比探测率与商用PbSe探测器及商用热敏电阻探测器的对比。  该工作以“Room
temperature high-detectivity mid-infrared photodetectors based on black
arsenic phosphorus”为题于2017年6月30日发表在Science子刊:《Science
Advances》杂志上(Science Advances, 3,
e1700589(2017))。  南京大学物理学院博士生龙明生和高安远为论文的共同贡献第一作者,缪峰教授、以及电子学院王肖沐教授和提供实验协助的上海技术物理所胡伟达研究员为该论文的共同通讯作者,该工作的合作者还包括香港中文大学的许建斌教授、慕尼黑理工大学的Tom
Nilges教授、上海技术物理研究所的陆卫研究员和陈效双研究员。  该项研究得到微结构科学与技术协同创新中心的支持,以及国家杰出青年科学基金、科技部“量子调控”国家重大科学研究计划(青年科学家专题)项目、江苏省杰出青年基金、国家自然科学基金等项目的资助。

近期,南京大学校物理学院缪峰教授课题组及科研合作团队成功实现了室温性能超越现有商用技术的高灵敏中波红外光电探测,为推动二维材料在红外探测领域的应用迈出重要一步。
近年来,中波红外在热成像、分子鉴定、自由空间通讯、光学雷达等方面获得越来越重要的应用,都要求器件在室温下具备高灵敏度。目前非制冷(室温)红外探测器的主流技术为热敏电阻式微辐射热计,但是器件比探测率偏低,响应时间慢。针对这方面的技术挑战,南京大学校物理学院缪峰教授课题组及科研合作国家利用新型窄带隙二维材料“黑砷磷”(b-AsP)及相关范德华异质结,成功实现了室温性能超越现有商用技术的高灵敏中波红外光电探测。
该课题组近年来在二维材料可见和近红外光电探测器领域已取得若干研究进展(Nano
Lett. 16,2254 (2016);Adv. Func. Mater. 26,1938
(2016).),在此基础上,这项工作选取了黑砷磷这样一种新型的窄带隙二维材料。这类材料通过元素砷同族掺杂黑磷得到,特定比例的黑砷磷b-As0.83P0.17已被发现其带隙可被调节至~0.15
eV,展现了在中红外探测领域的应用潜力。该工作首先利用机械解理法得到b-As0.83P0.17的薄层样品,制备了场效应光晶体管,在室温下观察到8.05μm中波红外的响应(图A),成功进入红外的第二个大气窗口。通过对探测器工作机制进一步的系统研究,发现光伏效应和光热电效应分别在不同背栅下会起到主导的作用(图B)。为了克服窄带隙半导体室温下暗电流和噪声较大从而导致器件性能显著下降的挑战,缪峰教授课题组利用二维材料定向转移的工艺,将不同掺杂的n型MoS2与b-As0.83P0.17(p型)堆叠在一起形成范德华异质节(图C)。测试结果显示这种结构的异质结有效降低了器件的暗电流和噪声,室温比探测率可高达5′109Jones,比目前被广泛使用的PbSe红外探测器的峰值探测率高了近1个量级(图D)。该结果也充分展示了基于窄带隙二维材料的范德华异质结在中波红外探测领域的巨大应用潜力。
图:(A)黑砷磷场效应器件在室温下8.05μm中波红外的响应信号,插图:器件的光伏响应(上)与结构示意图(下);(B)黑砷磷场效应器件的光电流随偏压及栅压的变化关系,揭示光伏效应和光热电效应分别起主导作用;(C)b-AsP-MoS2异质结光电探测器光学照片,标尺5μm;(D)室温下b-AsP-MoS2异质结光电探测器的比探测率与商用PbSe探测器及商用热敏电阻探测器的对比。
该工作以“Room temperature high-detectivity mid-infrared photodetectors
based on black arsenic
phosphorus”为题于2017年6月30日发表在Science子刊:《Science
Advances》杂志上(Science Advances, 3, e1700589(2017))。 编辑点评
目前非制冷(室温)红外探测器的主流技术为热敏电阻式微辐射热计,但是器件比探测率偏低,响应时间慢,南京大学研究国家在室温中波红外光电探测器获重要进展,这将推动二维材料在红外探测领域得到进一步应用。

以石墨烯为代表的二维材料因为原子级的厚度以及在电学、光学、热学、机械等方面的优异性能,有望在众多领域获得广泛的应用。目前已知或处于探索阶段的二维材料包括了从导体、半导体(例如过渡金属硫族化合物)到绝缘体的众多种类,这些材料还可以进行可控转移和堆垛,实现原子尺度的同质或异质结,从而为人们在信息器件领域实现可能的突破提供了重要的机遇。

这项工作创造性地设计了一种被称为“p-g-n”的新型范德瓦尔斯异质结,即选取两种不同掺杂的半导体二维材料和石墨烯,将石墨烯作为中间层堆垛实现原子层厚度的三明治结构。该结构中,原子层厚度p-n结因为强内建电场的存在,可以有效降低暗电流和提高响应速度;石墨烯因为具有零带隙和线性色散关系,能够有效实现宽波段吸收。在实验上,按照上述器件设计思路,这项工作结合机械解理、定向转移及微纳加工工艺,得到了高质量具有原子级平整界面的WSe2-graphene
-MoS2异质结探测器器件,并观测到非常优异的性能。在可见光波段的激光照射下,p-g-n异质结探测器光电响应率达到4250
A/W,比探测率达到1015Jones;在近红外波段和通信波段,响应率达到安每瓦的量级,比探测率达到1011Jones的量级,并在室温下实现了2.5
um的红外波段探测。此类探测器也表现出非常快的响应速度,实验分别观察到53.6us的上升时间和30.3us的下降时间。

图片 1

p-g-n探测器工作原理示意图;p-g-n器件光电响应率和比探测率随入射波长变化图(插图:器件显微镜照片);器件时间响应图。

对于二维材料探测器,单一材料不是完美的选择,例如基于石墨烯的光探测器由于光生载流子寿命过短和暗电流过大等因素,响应率受限;单一过渡金属硫族化合物探测器由于带隙的限制,存在探测波段有限的缺点。这项工作的意义在于,发现通过巧妙利用二维材料异质结可以完美地解决了这一系列问题,并表明二维材料异质结构有可能在未来电子及光电领域实现广泛的应用。

该项研究得到科技部“量子调控”国家重大科学研究计划项目、江苏省杰出青年基金、科技部国家重点基础研究发展计划、国家自然科学基金等资助。

附:

文章链接

缪峰教授课题组主页

(物理学院 科学技术处)

发表评论

电子邮件地址不会被公开。 必填项已用*标注